Homotopy approximation technique for solving nonlinear‎ ‎Volterra-Fredholm integral equations of the first kind

author

  • SH. Sadigh ‎Behzadi Department of Mathematics, Qazvin ‎Branch, ‎Islamic Azad University, Qazvin, ‎Iran.‎
Abstract:

In this paper, a nonlinear Volterra-Fredholm integral equation of the first kind is solved by using the homotopy analysis method (HAM). In this case, the first kind integral equation can be reduced to the second kind integral equation which can be solved by HAM. The approximate solution of this equation is calculated in the form of a series which its components are computed easily. The accuracy of the proposed numerical scheme is examined by comparing with other analytical and numerical results. The existence, uniqueness and convergence of the proposed method are proved. Example is presented to illustrate the efficiency and the performance of the homotopy analysis ‎method.‎

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

homotopy approximation technique for solving nonlinear‎ ‎volterra-fredholm integral equations of the first kind

in this paper, a nonlinear volterra-fredholm integral equation of the first kind is solved by using the homotopy analysis method (ham). in this case, the first kind integral equation can be reduced to the second kind integral equation which can be solved by ham. the approximate solution of this equation is calculated in the form of a series which its components are computed easily. the accuracy...

full text

APPLICATION OF FUZZY EXPANSION METHODS FOR SOLVING FUZZY FREDHOLM- VOLTERRA INTEGRAL EQUATIONS OF THE FIRST KIND

In this paper we intend to offer new numerical methods to solvethe fuzzy Fredholm- Volterra integral equations of the firstkind $(FVFIE-1)$. Some examples are investigated to verify convergence results and to illustrate the efficiently of the methods.  

full text

SOLVING NONLINEAR TWO-DIMENSIONAL VOLTERRA INTEGRAL EQUATIONS OF THE FIRST-KIND USING BIVARIATE SHIFTED LEGENDRE FUNCTIONS

In this paper, a method for finding an approximate solution of a class of two-dimensional nonlinear Volterra integral equations of the first-kind is proposed. This problem is transformedto a nonlinear two-dimensional Volterra integral equation of the second-kind. The properties ofthe bivariate shifted Legendre functions are presented. The operational matrices of integrationtogether with the produ...

full text

Degenerate kernel approximation method for solving Hammerstein system of Fredholm integral equations of the second kind

Degenerate kernel approximation method is generalized to solve Hammerstein system of Fredholm integral equations of the second kind. This method approximates the system of integral equations by constructing degenerate kernel approximations and then the problem is reduced to the solution of a system of algebraic equations. Convergence analysis is investigated and on some test problems, the propo...

full text

Application of Fuzzy Expansion Methods for Solving Fuzzy Fredholm- Volterra Integral Equations of the First Kind

In this paper we intend to offer new numerical methods to solve the fuzzy FredholmVolterra integral equations of the first kind (FV FIE − 1) base on collocation and Galerkin methods. Some examples are investigated to verify convergence results and to illustrate the efficiently of the methods.

full text

Evaluating the solution for second kind nonlinear Volterra Fredholm integral equations using hybrid method

In this work, we present a computational method for solving second kindnonlinear Fredholm Volterra integral equations which is based on the use ofHaar wavelets. These functions together with the collocation method are thenutilized to reduce the Fredholm Volterra integral equations to the solution ofalgebraic equations. Finally, we also give some numerical examples that showsvalidity and applica...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue 4

pages  315- 320

publication date 2014-12-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023